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PCSK9, a critical inhibitor of LDLR, is up-regulated by both HNF1α and SREBP-2 transcription factors. Besides 
PCSK9, SREBP-2 up-regulates LDLR gene. Nutraceuticals, including curcumin and berberine, can decrease plasma 
LDL-C levels through elevation of the hepatic LDLR via inhibiting HNF1α which is a specific transcription factor 
for PCSK9 gene. Statins increase the expression of both PCSK9 and LDLR through the activation of SREBP-2, 
resulting in PCSK9-mediated attenuation of their effects.  
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Abstract  

PCSK9 (proprotein convertase subtilisin kexin type 9) is a liver secretory enzyme that regulates   

plasma low-density lipoprotein (LDL) cholesterol (LDL-C) levels through modulation of LDL 

receptor (LDLR) density on the surface of hepatocytes. Inhibition of PCSK9 using monoclonal 

antibodies can efficiently lower plasma LDL-C, non-high-density lipoprotein cholesterol and 

lipoprotein (a). PCSK9 inhibition is also an effective adjunct to statin therapy; however, the cost-

effectiveness of currently available PCSK9 inhibitors is under question. Nutraceuticals offer a 

safe and cost-effective option for PCSK9 inhibition. Several nutraceuticals have been reported to 

modulate PCSK9 levels and exert LDL-lowering activity. Mechanistically, those nutraceuticals 

that inhibit PCSK9 through a SREBP (sterol-responsive element binding protein)-independent 

pathway can be more effective in lowering plasma LDL-C levels compared with those inhibiting 

PCSK9 through the SREBP pathway. The present review aims to collect available data on the 

nutraceuticals with PCSK9-inhibitory effect and the underlying mechanisms.  
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Abbreviations:  
ALA: alpha-linolenic acid,  
ApoB apolipoprotein B,  
ApoER2: apolipoprotein E receptor2  
APMF: aqueous extract of PM fruit 
ASCVD: atherosclerotic cardiovascular disease,  
COMIT: canola oil multicenter intervention trial,  
CGN: cerebellar granule neurons,  
DHA: docosahexaenoic acid;  
DPA: Docosapentaenoic acid,  
EPA: eicosapentaenoic acid,  
ER: endoplasmic reticulum 
EGF-A: epidermal growth factor-like repeat A 
FH: familial hypercholesterolemia 
GK: glucokinase 
HeFH: heterozygous familial hypercholesterolemia 
HNF1: hepatocyte nuclear factor1 
HMG-CoA: 3-hydroxy-3-methylglutaryl-coenzyme A 
LPS: lipopolysaccharide 
LDL: low-density lipoprotein 
LDL-C: low-density lipoprotein cholesterol 
LDLR: low-density lipoprotein receptor 
mAb: monoclonal antibodies 
PUFA: polyunsaturated fatty acid 
PM: Phaleria macrocarpa 
PCSK9: proprotein convertase subtilisin kexin type 9 
Q3G: quercetin-3-O-b-D-glucoside 
SRE: sterol regulatory element 
SREBP: sterol regulatory element-binding protein 
VLDLR: very low-density lipoprotein receptor 
LRP1: low-density lipoprotein receptor-related protein 
XZK: Xuezhikang 
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PCSK9: Biogenesis and physiological function  

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key regulator of cholesterol 

homeostasis that controls low-density lipoprotein (LDL) receptor (LDLR) density on the surface 

of hepatocytes. PCSK9 is a soluble member of the mammalian proprotein convertase family of 

serine proteases [1], which is synthesized and secreted  mainly by the liver, and in lower extent 

by other tissues such as the kidney, the small intestine, the central nervous system, the pancreas, 

the colon epithelium and the vascular smooth muscle cells [2-6]. PCSK9 gene, located in 

chromosome 1p33–34.3 close to the third genetic locus associated with familial 

hypercholesterolemia (FH)[2], encodes an inactive glycoprotein (i.e. pre-PCSK9) with 692 

amino acids comprising a signal sequence followed by a subtilisin-like catalytic domain and a C-

terminal domain [7-9]. Once the signal peptide is cleaved from pre-PCSK9 in the endoplasmic 

reticulum (ER), pro-PCSK9 (the soluble zymogen) is formed and then converted to mature 

secretory PCSK9 through autocatalytic cleavage of the prodomain in the Golgi apparatus [10, 

11]. After PCSK9 maturation, prodomain stays noncovalently bound to the active site of the 

catalytic domain, obstructing further enzymatic activity of PCSK9, but serving as a chaperone 

[12, 13]. While the catalytic domain of mature PCSK9 binds to the extracellular epidermal 

growth factor-like repeat A (EGF-A) domain of LDLR, the C-terminal domain of PCSK9 is 

required to bind with cell surface proteins such as annexin A2 [14]. The best known function of 

PCSK9 is the post-translational regulation of LDLR in hepatocytes [15], representing the major 

route for LDL cholesterol (LDL-C) clearance from the blood circulation [16, 17]. 

Mechanistically, PCSK9 binds to the extracellular EGF-A domain of the hepatic LDLR and 

promotes lysosomal degradation of LDLRs through two independent intra- and extra-cellular 

ways. In the relatively faster mode, the intracellular pathway, PCSK9 binds to the EGF-A 
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domain of the newly formed LDLR in the trans-Golgi network, where the PCSK9-LDLR 

complex is targeted to the lysosome [18]. In the extracellular pathway, the secreted PCSK9 

circulates in the bloodstream and binds to the EGF-A domain of the LDLR on the surface of 

hepatocytes, and escorts it into the lysosome compartment through clathrin-mediated endocytosis 

[19]. Given that normal trafficking of the LDLR back to the cell surface is dependent on the 

EGF-A domain [20-22], binding of PCSK9 to this domain inhibits recycling of the LDLR to the 

cell surface and enhances lysosomal degradation of LDLR [23, 24]. Consequently, there are not 

many LDLR remaining to clear LDL-C from the bloodstream when plasma PCSK9 levels are 

elevated as a result of gain-of-function mutations. Conversely, when there is low or no PCSK9 in 

the circulation as a result of loss-of function mutations, there will be more intact LDLR which in 

turn trap more LDL-C from the bloodstream [25].  

PCSK9: Transcriptional regulation  

It is known that the proximal promoters of either PCSK9 or LDLR genes contain a functional 

sterol regulatory element (SRE) that is targeted by sterol-responsive element binding proteins 

(SREBPs) in response to alterations in intracellular levels of cholesterol [26]. Sterol-dependent 

regulation of both PCSK9 and LDLR genes have been found to be mediated by SREBP-2 

transcription factor [27, 28]. Specifically, SREBP-2 is able to upregulate the expression of both 

PCSK9 and LDLR in states of intracellular cholesterol depletion. Beside the SRE region, 

promoter region of PCSK9 also involves a hepatocyte nuclear factor1 (HNF1) response site that 

binds predominantly to HNF1α, an essential transcription factor for basal expression of PCSK9 

[26]. HNF1α is also involved in SREBP-2-induced maximal PCSK9 gene expression in response 

to intracellular cholesterol depletion in HepG2 cells [29]. Site-directed mutagenesis studies have 

indicated that the HNF1 regulatory site works cooperatively with the SRE and mutations of 
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HNF1 may reduce the sensitivity of the promoter to sterols and also transcriptional regulatory 

activity of SREBP-2 on the PCSK9 promoter [29]. Expression of PCSK9 is found to be abundant 

in the liver, possibly due to the rich content of HNF1α transcription factor in the hepatic tissue 

[29]. Considering the fact that PCSK9 expression can also be regulated by HNF1 in an LDLR-

independent manner, HNF1 inhibition may be an alternative strategy for specific reduction of 

circulating PCSK9 levels.   

Statin therapy and PCSK9  

Statins, the mainstay of pharmacotherapy for dyslipidemia, indirectly increase the expression of 

both PCSK9 and LDLR through activation or nuclear translocation of SREBP-2 (Figure 1) [27]. 

Statins act mainly through inhibiting 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) 

reductase which is the rate-limiting enzyme in the cholesterol biosynthesis pathway [30]. Statin-

mediated HMG-CoA inhibition is paralleled by simultaneous intracellular cholesterol depletion. 

Mechanistically, intracellular cholesterol depletion activates the transcription factor SREBP-2 

that can induce LDLR gene expression and improve hepatic uptake of plasma LDL-C. On the 

other hand, PCSK9 expression has also been found to be strongly upregulated by SREBP-2 

following cholesterol depletion [31-34]. This paradoxical effect of statins on PCSK9 expression 

can limit their LDL-C-lowering capacity and partially explain the log-linear dose-response effect 

of these drugs. Moreover, increase in plasma PCSK9 levels during statin therapy has been 

associated with increased cardiovascular risk [35]. Therefore, the use of a PCSK9 inhibitor in 

combination with statins can be an effective strategy for reducing plasma LDL-C concentrations 

by counteracting the statin-induced PCSK9 overexpression.  

PCSK9 inhibition: a novel efficient cholesterol-lowering approach 
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The importance of PCSK9 inhibition as another lipid-lowering treatment has been anticipated by 

early studies that showed the causative effect of dominant gain-of-function mutations in the 

PCSK9 gene on FH [36], while loss-of-function mutations were associated with 

hypocholesterolemia and protection against coronary artery disease [37-40]. Cohen et al. were 

the first to show the association of PCSK9 polymorphism with both plasma LDL-C levels and 

cardiovascular risk in humans. They reported that loss-of-function mutations in the PCSK9 gene 

are associated with 28-44% reduction in plasma LDL-C concentrations and up to 88% decrease 

in cardiovascular risk, showing the important role of PCSK9 mutations in the regulation of 

cholesterol homeostasis [37, 38]. Furthermore, it was found that plasma PCSK9 levels are 

positively associated with circulating LDL-C levels in the ethnically diverse populations enrolled 

in the Dallas Heart Study and the JUPITER (Justification for the Use of Statins in Primary 

Prevention: An Intervention Trial Evaluating Rosuvastatin) trial [41, 42].  

The pivotal role of PCSK9 in the metabolism of LDL and LDLR as well as the verified safety of 

PCSK9 inhibition led to the development of PCSK9 inhibitors [43]. Novel PCSK9 inhibitors, 

including monoclonal antibodies (mAbs), active immunotherapy, small-molecule inhibitors, 

small interfering RNAs (siRNAs), and antisense oligonucleotides (ASOs) have been shown to 

profoundly reduce plasma LDL-C [43-45]. Although the development of two antisense 

oligonucleotides (BMS-84421 and SPC5001) and one humanized monoclonal antibody 

(bococizumab) was stopped, two FDA-approved human mAbs against circulating PCSK9 are 

already in the market:: evolocumab (Repatha®) and alirocumab (Praluent®). Both mAbs are 

indicated for FH or clinical atherosclerotic cardiovascular disease (ASCVD) requiring additional 

LDL-C lowering[46, 47][46, 47]46, 4746, 47[46,47]. The EMA has also approved both these drugs 

for the treatment of adults with primary hypercholesterolemia, such as those with HeFH and 
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mixed dyslipidemia who cannot achieve LDL-C levels with the maximally tolerated doses of 

statins and/or other lipid-lowering drugs as well as those who cannot tolerate statins or for whom 

statins are contra-indicated; evolocumab has also been approved for HoFH [48, 49]. These mAbs 

are the most potent cholesterol-lowering agents that can reduce LDL-C by up to 73% in patients 

with high LDL-C on maximally tolerated statin therapy and ezetimibe, including adult patients 

with heterozygous or homozygous FH, or statin-resistant patients with ASCVD [50-52].  Despite 

their efficacy, the cost-effectiveness of PCSK9 mAbs for the treatment of FH, which could be 

life-long, is questionable. According to a recent analysis, the use of PCSK9 inhibitors for 

heterozygous FH and ASCVD costs > $14,000 per patient per year, which is not cost-effective 

unless the annual costs can be reduced to $4,536 (the threshold to meet $100,000 per quality-

adjusted life-year) [53]. This highlights the need for cheaper PCSK9 inhibitors that could serve 

either as alternative or as adjunct to PCSK9 mAbs in order to reduce the required dose and cost 

of treatment. PCSK9 inhibitors may also exert certain adverse events that may limit their clinical 

use. Therefore, we are waiting for the results of RCTs to demonstrate whether the PCSK9 

inhibitors have any unexpected adverse effects due to their effectiveness (LDL-C levels < 40 

mg/dL) and/or effects resulting from the loss of PCSK9 functions at other sites in the body, in 

particular regarding neurocognition [54-57].  

Nutraceuticals as promising PCSK9 inhibitors  

Nutraceuticals are either functional foods or dietary supplements with health benefits besides 

their basic nutritional value [58]. Several nutraceuticals may exert lipid-lowering, anti-

atherosclerotic, anti-inflammatory and antioxidative properties [59]. Among lipid-lowering 

nutraceuticals, those inhibiting PCSK9 expression or activity can be considered as effective 

additions to the lipid-lowering armamentarium. As mentioned above, the paradoxical effects of 
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statins on PCSK9 expression, leading to attenuated lipid-lowering effects at higher doses, can 

potentially be negated by PCSK9 inhibitors. Nutraceuticals with potential PCSK9 inhibitory 

effects can offer several advantages over current PCSK9 inhibitor drugs. First, nutraceuticals are 

usually widely available at considerably lower prices compared with agents such as mAbs, and 

second, most nutraceuticals generally possess lower toxicity compared with synthetic/chemical 

agents owing to their natural origin and the limited doses that are routinely consumed as a part of 

diet. On the other hand, it should be pointed out that at the doses currently allowed for human 

use, therapeutic effects of most nutraceuticals having PCSK9 inhibitory activity is far to be 

comparable to those obtained with mAbs. In the following sections, we will review 

nutraceuticals that have been shown to alter PCSK9 status, either through modulation of PCSK9 

expression or mature protein secretion. 

Berberine  

Berberine is a natural cholesterol-lowering agent and an alkaloid present in a number of plants 

such as Berberis aristata, Berberis vulgaris, Coptis chinensis [60]. Mechanistically, berberine 

increases the uptake of LDL-C by enhancing the stability of LDLR mRNA and increasing 

hepatic LDLR density [61]. Berberine stabilizes LDLR mRNA via activating regulatory proteins 

located downstream of the extracellular signal regulated kinase (ERK) pathway which interact 

with the proximal sequences in the 3′ untranslated region (UTR) of the LDLR mRNA [62]. 

Besides stabilization of LDLR mRNA, berberine increases the stability of LDLR protein in the 

surface of hepatocytes through regulation of PCSK9 expression. Several in vitro and in vivo 

studies have shown berberine-mediated modulation of PCSK9 expression and are discussed in 

details as follows.  

In vitro studies 
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Cameron et al. showed that at a non-toxic concentration (15µg/ml) berberine decreases PCSK9 

mRNA and protein levels in HepG2 cells by 77 and 87%, respectively, which were associated 

with a 3-fold increase in the mRNA expression of LDLR [63]. Furthermore, when HepG2 cells 

were concomitantly treated with berberine and mevastatin, the PCSK9 mRNA–raising effect of 

mevastatin was suppressed, whereas the LDLR-rising effect was enhanced [63]. Similarly, in 

another study on HepG2 cells, berberine (20 µM) was found to decrease mRNA expression of 

PCSK9 by 23% at 24 h, while increase mRNA expression of LDLR by 1.8-3 folds at 4 and 24 h, 

respectively. In addition it was reported that berberine could contract the stimulatory effect of 

statins on PCSK9 expression [29]. Consistent with the above-mentioned results, Dong et al. 

reported that  berberine (40 µM) could significantly decrease protein and mRNA expression of 

PCSK9 in HepG2 cells [64]. Beyond LDLR and cholesterol metabolism regulation, PCSK9 has 

been found to affect systemic and central nervous system through modulation of other 

lipoprotein receptor family members, including apolipoprotein E receptor2 (ApoER2), very-low-

density lipoprotein receptor (VLDLR) and low-density lipoprotein receptor-related protein1 

(LRP1) [65-67]. Berberine can exert both neuroprotective [68-70] and neurotoxic effects [70] 

depending on the applied concentration; this dual effect has been proposed to be mechanistically 

related to the regulation of neuronal lipoprotein receptor expression [71]. To evaluate the impact 

of stress on neuronal lipoprotein receptors and PCSK9 expression in the nervous system, 

cerebellar granule neurons (CGN) were treated with a neuronal stressor but non-toxic 

concentration of berberine (1 µM) [71]. Results revealed that berberine at the concentration of 1 

µM exerts differential effects on the expression of PCSK9 and lipoprotein receptors. mRNA 

expression of PCSK9 and LDLR were found to be reduced by 0.6 and 0.42 folds, respectively, 

while the expression of APOER2 remained unaffected. In addition, mRNA levels of VLDLR and 
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LRP1 were upregulated by 2.64 and 1.94 folds, respectively [71], which can be justified by the 

downregulation of PCSK9 and subsequent reduction of receptor degradation. Berberine has been 

shown to affect expression of two important PCSK9 transcription factors, SREBP-2 and HNF1α 

[29]. As reported above, despite PCSK9 reduction in CGN treated cells, LDLR was also 

decreased which is not expected considering the observations in berberine-treated hepatocytes. 

This  discrepancy may be attributed to the lack of hepatocyte-specific transcription factor HNF-1 

in neurons [71]. Hence, the lack of HNF-1 might abrogate part of the inhibition of PCSK9 

expression and, consequently, part of the LDLR availability. Transcription of both PCSK9 and 

LDLR are known to be controlled by SREBP, and berberine downregulates LDLR and PCSK9 

expression in a SREBP-dependent fashion in a CGN model, potentially through an increased 

lipid uptake via increased VLDLR and LRP1 levels [71].  

In vivo studies  

There is in vivo evidence on the effect of berberine treatment on PCSK9 levels in 

hypercholesterolemic animal models. Dong et al. evaluated the changes in plasma PCSK9 

concentrations and hepatic LDLR expression in high fat diet-fed (HFD) mice and hamsters 

treated with 200 mg/kg/day and 100 mg/kg/day berberine, respectively [64]. Results from the 

berberine-treated mice indicated that serum PCSK9 levels and its liver mRNA expression were 

decreased by 50 and 46%, respectively, after 16 days of treatment; these changes were 

accompanied by increased protein levels of liver LDLR (67%) and improved lipid profile in 

HFD mice as compared with controls [64]. To evaluate the reproducibility of these results in 

other animal models, Dong et al. investigated the effect of 7-day treatment of HFD hamsters with 

100 mg/kg/day berberine. Serum PCSK9 levels were reduced by 30% in the treated group as 

compared with control hamsters [64]. Similarly, De-liang et al. evaluated the effect of berberine 
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(156 mg/kg/day) and a structurally modified form of berberine, 8-hydroxydihydroberberine (78, 

39 and 19.5 mg/kg/day), on HFD rats [72]. Both compounds significantly reduced liver PCSK9 

protein levels, which were associated with increased levels of liver LDLR protein and 

subsequent reduction of plasma cholesterol levels [72]. On the other hand, it has been shown that 

lipopolysaccharide (LPS), an inflammatory agent, can induce PCSK9 expression and also reduce 

the protein levels of hepatic LDLR [73], leading to decreased hepatic clearance of circulating 

LDL-C and elevated plasma LDL-C levels [74, 75]. In this context, Xiao et al. reported that 

stimulation of PCSK9 expression, attenuation of liver LDLR and resultant elevation of plasma 

LDL-C can be prevented through a 4-week administration of 10 or 30 mg/kg/day berberine in 

C57BL/6 mice co-administrated with 5 mg/kg/day LPS [76]. The researchers also investigated 

the protective effect of berberine in HFD C57BL/6 mice pretreated with berberine (10 or 30 

mg/kg/day) plus LPS (5 mg/kg/day). After 4 weeks of pretreatment, mice fed with the high-

cholesterol diet showed decreased and increased mRNA expression of liver PCSK9 and LDLR, 

respectively, which were associated with reduced levels of plasma LDL-C [76]. A clinical trial 

conducted by Pisciotta et al. investigated the impact of a nutraceutical pill containing berberine 

in heterozygote FH (HeFH) patients intolerant or resistant to statins [77]. The results showed that 

supplementation with the berberine-contained pill can reduce LDL-C by 10.5% in HeFH 

patients, which was suggested to be associated with an indirect berberine-mediated inhibitory 

effect on PCSK9 [77].  

Notably, contradictory results were obtained when Jia et al. evaluated the effects of berberine 

treatment (400 mg/kg/day) for 6 weeks in HFD rats [34]. Interestingly, berberine was found to 

significantly increase plasma levels of PCSK9 in HFD rats, and increase levels of both mRNA 

and protein expression of hepatic LDLR, and decrease plasma LDL-C concentrations in HFD 
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rats when compared with control rats [34]. Such variations in PCSK9 response to berberine could 

be due to the genetic polymorphisms in the promoter of PCSK9 and LDLR genes that may affect 

interaction of berberine with the promoter and subsequently alter gene transcription [78].   

Anti-PCSK9 mechanisms of berberine 

The overall trend in in vitro and in vivo findings has been in favor of a PCSK9-lowering effect 

for berberine that could justify the lipid-lowering activity of this nutraceutical through enhanced 

LDLR density on the surface of hepatocytes. As mentioned above, PCSK9 transcription is 

mainly controlled by the two neighboring regulatory sites, SRE and HNF1 binding sites, which 

are 100% preserved sequences in the PCSK9 promoter in human, mouse and rat [29]. 

Mutagenesis studies in HepG2 cells have shown that: 1) HNF1 site is the key regulatory motif, 

2) HNF1α is the essential cofactor for SREBP-2 in the transcriptional regulation of the PCSK9 

gene, and, 3) HNF1 is thought to be more effective than SREBP in lipid-mediated regulation of 

PCSK9 [29]. Overall, berberine has been suggested to inhibit PCSK9 transcription through 

mechanisms independent of sterol-mediated pathways [29, 63, 64, 72]. In vitro studies have 

shown that both PCSK9 and HNF1α protein levels are decreased in berberine-treated HepG2 

cells. In contrast to the concomitant reduction of both proteins, mRNA expression of HNF1α and 

SREBP-2 were found to remain unaltered in treated cells, whereas mRNA expression of PCSK9 

was reduced  [29, 64]. These findings are underpinned by in vivo studies on berberine-treated 

mice and hamsters showing that the reduction of mRNA and circulating protein levels of PCSK9 

is associated with decreased levels of liver HNF1α protein (42%) and increased levels of LDLR 

protein (67%) on the surface of hepatocytes, while mRNA expression of liver HNF1α, SREBP-1, 

SREBP-2, and LDLR, as a target gene of SREBP-2, were unaffected [64]. These findings are 

confirmed by another study that indicated SREBP-2 levels are unchanged in berberine-treated 
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rats [72]. It appears that berberine inhibits HNF1α-mediated PCSK9 transcription by reducing 

hepatic HNF1α protein content but without affecting its mRNA levels. This hypothesis is 

consistent with data showing that berberine reduces cellular HNF1α protein in  post-translational 

regulation via ubiquitin-induced proteasomal degradation [64]. Considering the fact that many 

lipid-lowering drugs, such as statins, up-regulate LDLR through stimulation of SREBP leading 

to PCSK9-mediated drug resistance in dyslipidemia, berberine could be regarded as a useful 

adjunct to statin therapy owing to its SREBP-independent inhibition of PCSK9. 

Curcumin  

Curcumin is a polyphenolic compound which is extracted from the rhizomes of Curcuma longa 

(turmeric). This nutraceutical is endowed with numerous pharmacological activities that are 

beneficial to human health including lipid-lowering, antitumor, immunomodulatory, anti-

inflammatory, antioxidant, anti-ischemic, analgesic, anti-arthritic, anti-dyspeptic, anti-depressant 

and hepatoprotective effects [79-105]. This wide spectrum of pharmacological effects of 

curcumin is due to the multiple molecular targets of this compound [85, 106-111]. With respect 

to lipid metabolism, several experimental and clinical studies have shown that curcumin 

improves dyslipidemia and decreases serum lipid peroxides, cholesterol and triglycerides levels 

[112-117]. From the mechanistic standpoint, curcumin has been demonstrated to regulate several 

key targets involved in lipid metabolism and homeostasis including LDLR, Niemann-Pick C1-

Like 1 protein, SREBP-1, apolipoprotein B-100, peroxisome proliferator-activated receptor-α 

and fatty acid synthase. 

To further explore the molecular mechanisms underlying the lipid-lowering effects of curcumin, 

Tai et al. investigated the effect of 5-20 μM curcumin on the protein and gene expression of 

PCSK9 and LDLR in human hepatic HepG2 and Huh7 cell lines [118]. The results indicated that 
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curcumin, at 10 and 20 μM concentrations, could decrease PCSK9 mRNA levels by up to 31 and 

48%, respectively, in parallel with significant reductions in intracellular and secreted PCSK9 

protein in both cell lines [118]. Furthermore, while curcumin had no significant effect on mRNA 

levels of LDLR, it enhanced the density (20-35%) and activity (LDL-C uptake) of LDLR protein 

on the surface of HepG2 cells. These findings revealed that curcumin can increase LDLR via 

post-translation regulation through inhibition of PCSK9 [118]. The aforementioned results are 

supported by two other studies that showed curcumin and its derivate, curcumin trinicotinate, to 

improve LDL-C uptake through inhibition of PCSK9 expression and upregulation of LDLR 

density on the surface of HepG2 hepatocytes [118, 119]. Moreover, curcumin was found to 

reduce PCSK9 expression in HepG2 cells via inhibition of HNF-1α transcription factor [118], an 

important PCSK9 regulator [120-122]. 

Polydatin  

Polydatin (resveratrol-3-O-β-mono-d-glucoside), also called piceid, is a resveratrol glycoside and 

a main bioactive component of Polygonum cuspidatum. Polydatin possesses several 

pharmacological activities including anti-allergic [123], antioxidant [124, 125], anti-

inflammatory [126-128], anti-tumor [129], anti-diabetic [130],  hypolipidemic [129, 131] and 

cardioprotective effects [132, 133]. Polydatin has ameliorating effects on lipid and glucose 

metabolism in type 2 diabetes mellitus [130]. In this context, Wang et al. evaluated the role of 

PCSK9 in the anti-diabetic effects of polydatin in vitro and in vivo [134]. The in vitro study was 

conducted on palmitic acid-induced insulin resistant HepG2 cells treated with polydatin 

(resveratrol-3-O-β-mono-d-glucoside). The results showed that the protein level of PCSK9, 

which was elevated in insulin resistant cells, is decreased by polydatin treatment (20 µM for 24 

h) [134]. Mechanistically, polydatin inhibits both the protein expression and interaction of 
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PCSK9 with LDLR. Also, it was shown that polydatin increases protein expression of 

glucokinase (GK) in insulin resistant HepG2 cells through a mechanism involving PCSK9 

inhibition [134]. GK plays an important role in glucose metabolism through phosphorylation of 

glucose to glucose 6-phosphate which is a key mediator in glycogen synthesis, glycolysis, and 

the pentose phosphate pathway [135]. It has been reported that GK expression is decreased in 

diabetic mice [136]. In accordance with in vitro studies, polydatin was found to improve glucose 

metabolism in female db/db C57BL/6 mice through PCSK9-dependent upregulation of GK 

[134]. It was also revealed that gene expression and protein levels of PCSK9 in the liver tissue 

and serum of db/db C57BL/6 mice treated with polydatin are significantly decreased and liver 

GK protein levels are increased [134]. Based on in vitro and in vivo studies, it was concluded 

that inhibition of PCSK9 could modify glucose metabolism and thereby ameliorate diabetic 

complications via increasing liver GK expression [134]. 

Xuezhikang and red yeast rice 

Red yeast rice, widely marketed as cholestin, is a product of yeast that is grown on rice, and has 

documented cholesterol-lowering effects [137, 138] by inhibiting cholesterol synthesis via the 

suppression of HMG-CoA reductase [139, 140]. Xuezhikang (XZK) is a cholestin extract that 

contains a mixture of lovastatin (dominant compound), plant sterols and isoflavones. XZK has 

shown efficient lipid-lowering effects and it is well tolerated in patients with statin intolerance 

[141, 142]. Recently, Yan-jun et al. investigated the effect of short-term (1200 mg/kg/day for 3 

days) and long-term (1200 mg/day for 8 weeks) XZK treatment in rats and dyslipidemic patients, 

respectively [143].  Experimental results showed that the short-term treatment with XZK could 

increase plasma PCSK9 levels by 70% in rats after 3 days, while there were no significant effects 

on lipid profile parameters such as LDL-C and HDL-C. It was also found that mRNA expression 
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of liver SREBP-2 and LDLR were markedly upregulated in XZK-treated rats. Furthermore, data 

from a clinical trial in XZL-treated patients indicated that plasma PCSK9 levels were increased 

by 34%, while LDL-C and total cholesterol were decreased by 28 and 22%, respectively, after 8 

weeks of treatment [143]. Mechanistically, it appears that XZK induces PCSK9 through the 

SREBP-2 pathway but further investigations are required to unravel the exact mechanism. Based 

on the evidence showing that red yeast rice-induced PCSK9 overexpression, combining red yeast 

rice preparations with one or more nutraceuticals with PCSK9-inhibitory activity might be of 

experimental and clinical value. In this regard, a nutraceutical pill containing both red yeast rice 

and berberine has demonstrated significant lipid-lowering activity [144-146]. 

Omega-3 fatty acids 

Dietary intake of n-3 polyunsaturated fatty acids (n-3 PUFAs), including eicosapentaenoic acid 

(EPA) and docosahexaenoic acid (DHA) – that are frequently found in fish oil – and alpha-

linolenic acid (ALA) – that is commonly found in plant oils – [147], is essential as n-3 PUFAs 

play numerous important roles in maintaining human health including regulation of blood 

pressure,  coagulation and inflammation (through conversion into signaling molecules such as 

eicosanoids and docosanoids) [148]. n-3 PUFAs have also documented cholesterol-lowering and 

atheroprotective properties in animal models [59, 148]. Yuan et al. investigated the protective 

effect of n-3 PUFA-enriched fish oil consumption (10% in diet) in male rats fed with Western 

style high-fat and high-cholesterol diet (WD) [149]. The results showed that long-term intake (16 

week) of n-3 PUFA-enriched fish oil can protect against WD-induced hypercholesterolemia via 

reducing hepatic PCSK9 expression [149]. Reduced PCSK9 expression was associated with a 

84% reduction in plasma LDL-C levels in fish oil-fed rats compared with control rats [149]. 

Similarly, Sorokin et al. reported that both mRNA and circulating PCSK9 levels were 
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significantly reduced (by 70%) in ApoE−/− female mice treated with omega-3 FA-rich (OR) diet 

(1.8 g omega-3 FAs/kg diet per day) or omega-3 FA-rich plus aspirin (ORA) diet (0.1 g 

aspirin/kg diet per day) for 13 weeks [150]. Notably, circulating PCSK9 levels were found to be 

lower in the ORA diet group compared with the OR diet group, though treatment with aspirin 

alone showed no significant effects on plasma PCSK9 levels [150]. Furthermore, the reduction 

of PCSK9 levels in both OR and ORA diet groups was associated with 40% less plasma 

cholesterol in very low-density lipoprotein (VLDL) and LDL fractions as compared with the 

control group, whereas, as demonstrated by en face analysis and hematoxylin and Movat 

staining, the atherosclerotic plaque area was found to be reduced only in the ORA group [150].   

The aforementioned findings are supported by those of Rodriguez-Perez et al. study that 

analyzed data from the Canola Oil Multicenter Intervention Trial (COMIT), a randomized 

double-blind controlled crossover feeding trial in which volunteers consumed diets with one of 

the following oil interventions: (1) canola oil; (2) canola oil rich in DHA; and (3) high-oleic acid 

canola oil [151]. It was shown that enrichment of canola oil with DHA (by 6%) lowers 

circulating PCSK9 and triacylglycerol levels compared with canola and canola oleic diets [151]. 

Furthermore, circulating PCSK9 levels were found to be significantly and positively associated 

with LDL-C, triacylglycerol and apolipoprotein B (apoB) levels, while no association was found 

between PCSK9 and HDL-C levels [151]. In addition, circulating PCSK9 levels were shown to 

be positively associated with plasma cholesterol synthesis markers, including lathosterol and 

desmosterol, in all three intervention groups, suggesting that circulating PCSK9 concentrations 

are sensitive to cholesterol synthesis [152]. Likewise, a PCSK9 transcription factor, SREB1c is 

proposed to be inhibited by DHA, subsequently decreasing the expression of PCSK9 [153]. In 

this context, Graversen et al. showed that the daily consumption of 2.2 g marine n-3 PUFAs 
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(containing 38.5% EPA, 25.9% DHA and 6.0% docosapentaenoic acid (DPA)) for 12 weeks can 

decrease circulating PCSK9 levels by 11.4 and 9.8% in premenopausal and postmenopausal 

women, respectively (120). In contrast, plasma LDL-C levels showed no significant changes 

[154]. Of note, it was shown that n-3 PUFAs can inhibit SREBP-2 through elevating hepatic 

cholesterol content which leads to decreased expression of PCSK9 as a target gene of SREBP-2 

[152]. It was also suggested that n-3 PUFAs can activate PPAR-α that downregulates PCSK9 

expression [155, 156].  

Phytosterols 

Phytosterols, including plant sterols and stanols, are steroid compounds similar to cholesterol 

which occur in plants [157]. Stanols are saturated forms of sterols lacking any double bond in the 

sterol ring. Phytosterols decrease the intestinal absorption of cholesterol in humans and can 

lower plasma LDL-C levels by up to 10% at daily intakes of 2-2.5 g [157]. While the exact 

mechanism of action is still uncertain, it has been suggested that phytosterols interfere with the 

intestinal and hepatic metabolism of sterols, thereby impeding incorporation of cholesterol in 

chylomicrons [158]. In a randomized controlled double-blind trial, Simonen et al. evaluated the 

effect of a 6-month consumption of plant stanol fatty acid esters (3 g/day) on circulating PCSK9 

levels in normal and hypercholesterolemic subjects [159]. The results showed that long-term 

intake of plant stanol esters exerts no significant effect on circulating PCSK9 concentrations and 

hepatic LDLR levels in normo- to moderately hypercholesterolaemic subjects, but decrease 

plasma LDL-C by 7-10% [159]. This finding implies that long-term consumption of plant stanol 

esters can lower LDL-C through inhibition of cholesterol absorption, without interfering with 

PCSK9 metabolism and subsequently the LDL receptor-mediated cellular cholesterol uptake and 

clearance. However, conflicting results  were obtained when the effect of the acute intake of 50 
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mg plant stanol esters (composed of 70% sitostanol and 30% campestanol esterified with a fatty 

acid blend containing 80% linoleic acid, 15 % oleic acid and 5% stearic and palmitic acids) was 

evaluated in C57BL/6J mice [158]. Smet et al. reported that acute oral intake of such a 

composition of plant sterol esters can up-regulate mRNA expression of intestinal PCSK9 and 

LDLR and their main transcription factor, SREBP-2, whereas hepatic expression of these genes 

were down-regulated after 15 minutes following oral intake [158]. These alterations were 

associated with reduced intestinal cholesterol absorption and decreased plasma LDL-C levels 

[158]. While the data is still few to be conclusive, it appears that long-term and acute 

administration of plant stanol esters can exert different effects on PCSK9 and LDLR expression, 

whereas both routes efficiently decrease plasma LDL-C levels and intestinal cholesterol 

absorption.  

Flavonoids  

Flavonoids include a broad class of polyphenolic molecules which occur in vegetables, fruits and 

plant-derived juices, such as coffee, tea and wine. Several lines of evidence from clinical trials 

have verified the lipid-lowering and cardioprotective effects of flavonoids in humans [160-163]. 

Quercetin is a well-documented antioxidant flavonoid present in a wide range of vegetables and 

fruits. Several experimental and clinical studies have shown that quercetin can improve 

dyslipidemia, hypertension and atherosclerosis [163-165].  Mbikay et al. investigated the effect 

of 0-10 µM quercetin-3-O-b-D-glucoside (Q3G) on hepatic PCSK9 and LDLR expression and 

also hepatic uptake of LDL-C in human Huh7 hepatocytes [166]. The results show that Q3G 

could decrease mRNA expression of PCSK9 by 20-30%, while increase mRNA and protein 

expression of LDLR by 60% and 300-400%, respectively. Notably, it was found that Q3G 

gradually elevates the intracellular concentration of PCSK9 protein, but reduces its secretion. 
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Increased intracellular PCSK9 protein is due to its accumulation, which is attributed to the 

inhibition of sortilin, a sorting receptor found to enhance PCSK9 secretion. Overall, the 

aforementioned effects of Q3G were accompanied by increased uptake of LDL in Huh7 

hepatocytes [166].  

Phaleria macrocarpa fruit extract 

Phaleria macrocarpa (PM) is an Indonesian medicinal plant belonging to Thymelaceae that 

grows in tropical areas of the Papua Island [167]. The extracts of PM have been found to possess 

several invaluable medicinal effects such as hypolipidemic, anticancer, antidiabetic, anti-

inflammatory, antioxidant and antimicrobial effects [168]. As demonstrated by phytochemical 

analysis, PM fruits are rich in phenolic compounds, including benzophenone glycoside, icariside 

C3, magniferin and gallic acid [168]. As revealed by in vitro and in vivo experiments, PM fruit 

can prevent arteriosclerosis and reduce cholesterol levels in Japanese quails and in primary 

cultures of rat hepatocytes [169, 170]. To evaluate the underlying mechanisms for the 

cholesterol-lowering effect of PM, Chong et al. investigated the effect of an aqueous extract of 

PM fruit (APMF) both in vitro and in vivo [170]. It was found that treatment with APMF at the 

dose of 20-40 mg/kg/day for 12 weeks can reduce plasma LDL-C levels by 32-38% in high-

cholesterol (3%) diet-fed rats compared with normal diet-fed rats [170]. Although high-

cholesterol diet decreased circulating PCSK9 concentrations and liver LDLR levels by 39 and 

42%, respectively, compared with normal diet-rats, APMF treatment (20 mg/kg/day) restored 

these changes by increasing circulating PCSK9 and liver LDLR levels by 97 and 115%, 

respectively [170]. Notably, higher doses (30 and 40 mg/kg) of APMF showed no significant 

effects on circulating PCSK9 levels [170]. Similarly, an in vitro study on HepG2 cells showed 

that APMF treatment (0.1-1000 µg/mL) increases both mRNA and protein levels of PCSK9 and 
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LDLR [170]. These findings suggest that APMF ameliorates plasma LDL-C levels through 

inducing SRE pathway that leads to increased PCSK9 and LDLR levels, a mechanism that is 

similar to statin-induced effects [170].  

Tanshinone IIA 

Tanshinone IIA, known as “Danshen”, is a nutraceutical compound isolated from the root of 

Salvia miltiorrhiza which is widely used in the Traditional Chinese Medicine [171]. As shown in 

experimental and clinical studies, tanshinone IIA elicits several biological and pharmaceutical 

activities such as anti-atherosclerotic, antihyperlipidemic, anti-adipogenic, antioxidant, 

anti-inflammatory and vasodilatory effects. Owing to its putative cardioprotective and 

anti-atherosclerotic effects, tanshinone IIA has been used to prevent and treat cardiovascular 

diseases [172-175]. Animal studies have shown that tanshinone IIA can reduce plasma LDL-C 

levels in HFD-C57BL/6J mice, and also regress atherosclerotic plaque without significant effect 

on other lipid markers [172, 175, 176]. Recently Jia et al. investigated the underlying mechanism 

for the lipid-lowering effects of tanshinone IIA in vivo [171]. The results revealed that 

intraperitoneal administration of tanshinone IIA at a daily dose of 10 mg/kg for 3 months can 

upregulate hepatic mRNA and protein expression of SREBP-2, PCSK9, and LDR in 

hyperlipidemic rats. These effects are translated into an overall enhanced hepatic clearance of 

LDL-C [171].  

 

Conclusions 

PCSK9 is an important regulator of lipid metabolism and an efficient target for plasma LDL-C 

reduction. Statins are known to elevate circulating PCSK9 levels and this may attenuate their 

lipid-lowering effects. Combining statins with a PCSK9 inhibitor is an optimal strategy for 
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reducing plasma LDL-C levels in severe dyslipidemias including FH. However, the widespread 

use of such a combination regimen is challenged by the cost of currently available PCSK9 

inhibitors and in particular mAbs.  

Several nutraceuticals exert lipid-lowering and atheroprotective properties. Berberine, curcumin, 

polydatin, n-3 PUFA-enriched fish oil, DHA-enriched canola oil, marine n-3 PUFAs and 

quercetin-3-O-b-D-glucoside have been identified to lower PCSK9 levels (Table 1) and the 

PCSK9-lowering effect of some of these agents is supported by data from human trials (Table 

2). There are many other nutraceuticals with documented lipid-lowering properties [82-84,177-

192]. However, there are no data with regard to their effects on PSCK9 or SRE. 

SREBP-2, a common transcription factor for PCSK9 and LDLR genes, is up-regulated by statins. 

Therefore, nutraceuticals that inhibit PCSK9 through SREBP-independent pathways can be 

considered as a useful adjunct to statins. Among the aforementioned nutraceuticals inhibiting 

PCSK9, berberine and curcumin may inhibit PCSK9 expression through HNF1α suppression. 

However, mechanisms of the underlying PCSK9 inhibition by other nutraceuticals described in 

this review (e.g. polydatin, n-3 PUFAs and quercetin-3-O-b-D-glucoside) have not yet been 

determined. Therefore, berberine and curcumin are suggested as useful adjuncts to statin therapy 

owing to their SREBP-independent inhibition of PCSK9 (Figure 1), safety and known anti-

atherosclerotic and cardioprotective activities. Nevertheless, evidence from well-designed 

randomized controlled trials is required to support the added value of such a combination in 

reducing cardiovascular events compared with statin monotherapy.  
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Figure legends 

Figure1. PCSK9, a critical inhibitor of LDLR, is up-regulated by both HNF1α and SREBP-2 

transcription factors. Besides PCSK9, SREBP-2 up-regulates LDLR gene. Nutraceuticals, 

including curcumin and berberine, can decrease plasma LDL-C levels through elevation of the 

hepatic LDLR via inhibiting HNF1α which is a specific transcription factor for PCSK9 gene. 

Statins increase the expression of both PCSK9 and LDLR through the activation of SREBP-2, 

resulting in PCSK9-mediated attenuation of their effects.  
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